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Breaking an antiunitary symmetry modifies the localization length. In analogy to results obtained
recently in the context of Anderson localization in disordered solids, we establish that the localization
length X of dynamically localizing quantum chaotic systems depends on the invariance properties of
the system under antiunitary symmetry operations. We consider a Hamiltonian system—a modified
version of the kicked rotor—which, by tuning its parameters, can change its invariance properties in
a manner similar to the (Gaussian orthogonal ensemble)—(Gaussian unitary ensemble)— (Gaussian
symplectic ensemble) transitions (3 =1 — 8 = 2 — 8 = 4) in Dyson’s theory of random matrices.
We find that A depends on the universality class according to A(8) = BA(8 = 1). This relation
holds as long as the corresponding classical diffusion constant is kept at a fixed value. Based on
semiclassical arguments substantiated by an extensive numerical study of the symplectic kicked
rotor, we show that the transition between different universality classes is a smooth function of
the symmetry-breaking interaction. For the transition from the orthogonal to the unitary class
(8 =1 — B = 2), the semiclassical theory provides an approximate expression for the transition
function as well as the critical strength of the symmetry-breaking interaction necessary to achieve the
full factor-of-2 increase of the localization length. Universal scaling functions describe the crossover
between the diffusive regime and the Anderson localized regime for all three universality classes. The
three functions are very similar and, within a few percent, can be reproduced by a single function.
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I. INTRODUCTION

Antiunitary symmetries play an important role in the
description and classification of quantum systems. Unlike
unitary symmetries, they do not lead to conserved quan-
tum numbers. But the presence or absence of an anti-
unitary symmetry can have profound and measurable
consequences for the observables of a quantum system.
The effect is universal. This means that breaking an
antiunitary symmetry results in a multiplication of the
magnitudes of system observables by universal factors
whose precise numerical values depend on the presence
(or absence) of additional unitary or antiunitary sym-
metries. Well-known examples are cross sections, tran-
sition probabilities, spectral statistics, and resonance
widths [1]. In case an antiunitary symmetry is based
on a classical invariance (for instance, time reversal in-
variance) the effect of breaking this symmetry is much
less pronounced—if not entirely absent—on the classical
level. Thus the importance of antiunitary symmetries is a
feature of quantum systems and does not have a classical
analog.

Another purely quantum feature without a classical
analog is Anderson localization. This phenomenon, first
discoverd in the study of electron transport in disordered
solids [2], was also found in certain deterministic Hamil-
tonian systems whose classical counterpart is chaotic. A
paradigm example is the quantum kicked rotor [3-8] but
localization also occurs in other systems such as periodi-
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cally perturbed surface state electrons [9,10] or Rydberg
atoms in strong microwave fields [11,12]. These rather
simple dynamical systems and the disordered (quasi-
one-dimensional) solid share three important properties
which enable the onset of Anderson localization: (i) the
classical phase space is extended, (ii) diffusion character-
izes the classical evolution of trajectory ensembles, and
(iii) many trajectories contribute to the same transition
and the corresponding quantum amplitudes are endowed
with phases which are sufficiently uncorrelated to induce
Anderson localization as a result of intricate interfer-
ences.

Breaking an antiunitary symmetry modifies the local-
ization length. For disordered systems this effect was
predicted by several authors [13,14]. They obtained the
result

A(B) =pAB=1) (1.1)
Here, ) is the localization length and 8 = 1,2,4 is the
Dyson parameter characterizing the universality class of
the system involved: 8 = 1 (4) for time reversal invari-
ant disordered systems which do not (or do) involve spin
degrees of freedom and B = 2 for systems with broken
time reversal symmetry.

The relation (1.1) makes sense only if the symmetry-
breaking interaction does not change the diffusion prop-
erties of the underlying classical system. Therefore, in
devising experiments and theoretical models to study the
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effect (1.1), great care has to be taken to ensure this con-
dition. We emphasize that in a typical nonlinear sys-
tem this is an elusive goal. Even small changes in the
symmetry-breaking interaction can change phase-space
structures dramatically with an accompanying drastic ef-
fect on the classical diffusion constant D. This statement
is strictly true in case there is only one parameter con-
trolling the symmetry-breaking interaction. In case the
symmetry-breaking interaction depends on two control
parameters, it is possible to study the effect of symmetry-
breaking on lines of constant D in the two-dimensional
parameter space. But this procedure may take us into
phase-space regions which we do not wish to explore.
Also it limits the way in which the symmetry is bro-
ken to a one-dimensional subspace of the full parameter
space. Therefore, in the one-parameter case, or if we do
not want to impose any restrictions in the two-parameter
case (or N-parameter case, in general) the best we can do
is to keep the diffusion properties of the system constant
on average. The residual oscillations in the diffusion con-
stant can be taken into account by normalizing the local-
ization length to the classical diffusion constant D. Our
model system, to be discussed in Sec. II, is defined in this
spirit.

The prediction (1.1) was checked experimentally in
magneto-transport measurements [14]. The case 8 = 2
was realized with the help of a Si-doped GaAs sample.
In this material the spin effects are small. Breaking time
reversal by switching on a magnetic field should result in
a doubling of the localization length according to (1.1).
This was indeed observed. In a Y 3Sip.7 sample in which
spin-orbit scattering is large, a transition from 3 = 4 to
B = 2 was observed when switching on a magnetic field.
The accompanying halving of the localization length was
observed [14].

In the present paper we study the effects of an anti-
unitary symmetry on the localization length of quantum
chaotic systems and compare them with the known re-
sults for disordered solids. Contrary to disordered solids,
localization in quantum chaotic systems is not brought

about by externally introduced randomness but is self-

induced by the underlying chaotic classical dynamics.
Therefore an intriguing question of central importance is
whether (1.1) derived in the context of disordered solids
holds in the context of dynamically localizing systems
with a chaotic classical limit. Based on semiclassical ar-
guments supported by extensive numerical tests we show
that this is indeed the case. Moreover, we show that
the localization length is a continuous function of the
symmetry-breaking interaction and a universal function
describes the transition between the diffusive regime and
the Anderson localized regime.

In order to illustrate our results, we study the sym-
plectic kicked rotor recently introduced by Scharf [15].
The symplectic kicked rotor is constructed by coupling
a spin-% degree of freedom to the standard kicked rotor,
which results in

H=3 + k (Vo(o) +> Vi(0)0i> 5p(t) . (1.2)

=1

Here, V;(6), 7 = 0,...,3 are 27 periodic functions,
01 = 0g, 02 = 0y,03 = 0, are the Pauli matrices, 6
is thg rotation angle, [ is the angular-momentum opera-
tor (I = —i0/06), and 6,(t) is the 1-periodic § function.
7 and k are control parameters. The Hamiltonian (1.2) is
powerful enough to exhibit all three statistical universal-
ity classes. A certain class is selected by an appropriate
choice of potentials V;. Quantizing the rotor on a torus,
Scharf was able to represent the Hamiltonian (1.2) as
a matrix of finite dimension. He chose V;(0) = cos(8),
Vi(0) = v;sin(v;0), ¢ = 1,2, 3, and imposed the boundary
condition ¥ (6 + 27) = exp(ia) ¥ (#) (Bloch condition in
the resonance case). For Bloch number ¢ = In2, K = 5,
T = 87/401, (k ~ 79.78), v; = 0.1, vy = 0.2, v3 = 0.3,
he showed that the nearest-neighbor statistics of the one-
cycle propagator of (1.2) exhibits properties of the CUE
ensemble, while for Bloch number a = 0 CSE properties
are obtained. Here and in the following COE, CUE, and
CSE will denote the three Dyson ensembles, the circular
orthogonal, unitary, and symplectic ensembles [16-18],
respectively. These three universality classes are associ-
ated with 8 = 1,2, and 4, respectively.

In order to study the localization properties of (1.2)
and its behavior when switching between universality
classes, we focus on the nonresonant case by quantiz-
ing the rotor on a cylinder. This approach yields a
nonreducible, infinite-dimensional one-cycle propagator.
We will show that in a basis smaller than the localiza-
tion length, the nonresonant one-cycle operator exhibits
COE, CUE, and CSE properties for appropriate choices
of parameters in (1.2). This enables us to study the local-
ization length for all three universality classes in a single
model system.

As was already emphasized above, the comparison of
localization lengths for the different universality classes
is meaningful only if the results are properly normalized
to the respective classical diffusion constants. For the
CUE rotor we were able to derive analytical expressions
for the diffusion constant by extending a diagrammatic
method [19,20] which was already successfully applied
to the standard kicked rotor. The analytical formulas
obtained turned out to be in very good overall agreement
with numerical Monte Carlo calculations.

For the general CSE rotor it is difficult to define the
corresponding classical system which is necessary for cal-
culating the classical diffusion constant. Questions relat-
ing to this issue are discussed in Sec. IV. Nevertheless, by
studying the mapping of the quantum mechanical energy
expectation value in Sec. IVD, we were able to extract
a zeroth-order expression for what can be identified with
the classical diffusion constant in this case.

The paper is organized as follows. In Sec. IT we present
our model [constructed from (1.2)] and discuss its sym-
metries for special limiting choices of the control parame-
ters. We also study the quasienergy statistics of the one-
cycle propagator of the model Hamiltonian and present
a chart which maps the control parameters of the system
onto the corresponding universality classes. In Sec. III
we expand considerably on the CUE limit of the symplec-
tic kicked rotor already discussed briefly in Ref. [21]. In
Sec. IV we discuss the CSE limit of the symplectic kicked
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rotor. We establish that in all three limiting cases, i.e.,
COE, CUE, and CSE, the staying probability [22] can
be derived from a universal scaling function which de-
scribes the transition between the diffusive regime and
the Anderson localized regime. Calculating the ratio of
the participation ratio and the diffusion constant for the
symplectic rotor, we establish the validity of (1.1) for the

J
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localization length of the symplectic kicked rotor. Sec-
tion V concludes the paper with a brief summary and
discussion of our results.

II. THE MODEL

Throughout this paper we use

H = %sz +k [éos (?) cos (%) cos(0) + 1 cos (%) sin (%) sin(20)o, + sin (%B) sin(@)az] 0p(t) (2.1)

which is a special case of (1.2). The meaning of the
symbols in (2.1) is the same as in (1.2). We introduced
the “symmetry-breaking parameters” p and g which al-
low us to switch between different symmetry classes (see
Secs. IIC and IID below).

As was discussed already in the Introduction, it is of
utmost importance to control the diffusion properties of
the Hamiltonian (2.1) for a meaningful comparison of the
localization lengths for the different symmetry classes.
The form of the Hamiltonian (2.1) was suggested by our
desire to keep the diffusion properties of (2.1) constant
under a change of the symmetry-breaking parameters p
and ¢. In the case p = 0 the diffusion is indeed constant
on average. This is shown in detail in Sec. III. In Sec. IV
we will show that this also holds for the special cases
g = 0 and p = 1. For the more general case p # 0,
g # 0 we will show in Sec. IVD that the average diffusion
constant is only weakly dependent on p and gq.

For some investigations it is advantageous to write
(2.1) in the form

H= %’TP + k[cos(0) + Lusin(20)o, + e5sin(0)0,]0,(t).
(2.2)

The mapping between the two notations, (k,p,q) —
(k, p,€) is given by

p=kcos (7;—:0) sin (Tq) //4,
€ = ksin (Z;B) /n

The inverse mapping, (x, u,€) = (k,p,q) is given by

. 2
k=ry/1+4pu2+¢2, p:—arcta,nIZ
™

(2.3)

viexd
(2.4)

2
= Z arct
¢ = —arc an(u)

Apart from our desire to make the classical diffusion con-
stant as weakly dependent on the symmetry-breaking pa-
rameters as possible, the form of the Hamiltonian (2.1)
was chosen such that for special values of the symmetry-
breaking parameters (2.1) reduces to variants of the
kicked rotor already studied in the literature.

A. Special cases

(i) p = ¢ = 0: In this case the Hamiltonian (2.1) de-
scribes the standard kicked rotor [3,4,8] whose associ-
ated classical dynamics is known as the standard map-
ping [23]. This Hamiltonian is probably the most widely
studied time-dependent Hamiltonian in the literature. It
yielded surprising results on localization in quantum dy-
namic systems [3-5,24] and was used to study the effects
of weak localization in the kicked rotor [22].

(i) p = 0, ¢ # 0: In the representation in which o
is diagonal the resulting Hamiltonian is equivalent with
the Hamiltonian used in Ref. [21] to study the influence
of symmetry breaking in quantum chaotic systems.

(iii) p # 0, ¢ = 0: In this case the Hamiltonian (2.1)
reads

7] P
H=17"+k [cos (7) cos(9)

+sin ("2—7’) sin(@)az] 5,(t).  (2.5)

In the standard representation in which o, is diago-
nal this Hamiltonian is equivalent with two decoupled
Hamiltonians Hy = 171 + kcos(§ — %) and H, =
172 + kcos(6 + %P). Shifting § by +7P case (iii) is
obviously equivalent with case (i) and does not add any-
thing new.

(iv) p # 0, g # 0: This case is the focus of attention in
this paper. It cannot be reduced to any of the three cases
above and enables us to study the symplectic symmetry

in a quantum chaotic system and its influence on the
localization length.

B. Symmetries

The standard kicked rotor is invariant with respect to
time reversal, parity, and conjugation, three symmetries
denoted by 7', P, and C, respectively, and given by [22]

T: t—»>—ti—s-I, 65 0,
P: t— tio-I 06— -0,
C: to—ti— I, 06— —0.

(2.6)

The conjugation symmetry C is the time reversal sym-
metry in the [ representation [15]. Obviously, C = T o P,
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and CPT = 1. Only the P symmetry yields a conserved
quantum number since P is a umtary symmetry whereas
T and C are antiunitary. The C symmetry, the “conjuga—
tion symmetry,” is the most interesting of the three since
it is perfectly suited for our investigation of localization
phenomena in the symplectic kicked rotor model. This is
so because [ — [ under the application of ¢ , which means
that a rotor wave function localized at a site o > 0 with
localization length A < lo will not be displaced on the
l lattice under the application of C but stays localized
around lo. This enables us to work with a model space
centered around lp and to neglect altogether the space
l < 0. The restriction to the I > 0 model space is allowed
since a wave packet started out localized around lp > 0
has only an exponentially small chance to tunnel into the
space | < 0 under the dynamics defined by (2.1).

As aresult and without loss of generality, we will from
now on always assume that [ > 0. In this case the time
reversal symmetry 7' loses its meaning and the conjuga-
tion symmetry C takes its place as the only antiunitary
symmetry which leaves the model space invariant. It
was shown by Robnik and Berry [25] that any antiuni-
tary symmetry can serve as a generalized time reversal
symmetry. Thus the C symmetry enables us to study the
effects of an antiunitary symmetry (and its breaking) on
the localization length of the system.

It is well known [1,17,18,25] that the presence or ab-
sence of an antiunitary symmetry can change drastically
global features of a quantum system even without af-
fecting its classical properties. As an example, consider
case (ii) in Sec. ITA above. As discussed, it is equivalent
with two spinless Hamiltonians each of which is equiva-
lent with the spinless Hamiltonian discussed in Ref. [21].
Switching on the ¢ parameter, the two decoupled spinless
Hamiltonians cease to be invariant under C as defined in
(2.6). As a consequence, the localization length of the
system increases by a factor of 2. This fact was pre-
sented in Ref. [21] together with a thorough study of the
symmetry-breaking region in the vicinity of ¢ = 0.

In the case p # 0, ¢ # 0 we need an extension of the ¢
symmetry which can be applied in a case with spin. We
use

¢ = io,PK, (2.7)
where K is the operator of complex conjugation. It is
then easy to see that CHC = H for all p and ¢q. At this
point there seems to be a problem: How was it possible
to study the destruction of the C' symmetry in Ref. [21]
whereas the Hamiltonian in Ref. [21] according to (ii) in
Sec. IT A above is only a special case of (2.1) for p = 0
and (2.1) is obviously invariant under C defined in (2.7)
for all p and q7 The answer is that on the spinless level,
the C symmetry as defined in (2.6) is indeed destroyed.
In the general case with spin, H is indeed C invariant
for all p and ¢q. But whereas C is the only symmetry of
the problem for p # 0,1, ¢ # 0,1, there is an additional
“geometric” symmetry [18] in the case p = 0: G = io,
with [G, H] = 0, [G,C] = 0, G* = —1. This means that
H no longer belongs to the symplectic universality class
but exhibits the features of the unitary universality class,
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the case which was studied in Ref. [21]. A more detailed
discussion of the statistical properties of H, for various
choices of p and g will be presented in the following sec-
tion.

C. Quasienergy statistics

In this section we present an effective way to charac-
terize the symmetry of the Hamiltonian H as a function
of p and ¢. For time periodic systems such as (2.1) it is
possible to define the one-cycle propagator U which prop-
agates the system over one complete period of the exter-
nal perturbation. Since the dynamics of (2.1) can easily
be obtained from powers of U, all the relevant dynamical
information is in fact contained in U. In particular U
and H share the same universality class. Therefore, in-
stead of studying the symmetry properties of H, we can
study the symmetry properties of U which are reflected
in the statistics of the eigenphases of U, the quasiener-
gies [26]. The statistical universality classes relevant for
the quasienergy problem are Dyson’s three circular en-
sembles (COE, CUE, and CSE) introduced above. All
three ensembles show level repulsion on the unit circle
and we expect that we can switch between these three
universality classes as a function of the two symmetry-
breaking parameters p and q. Since our model space is
restricted to the ! > 0 states, the one-cycle propagator
U is nonreducible. Therefore, diagonalizing U in a finite
basis (the number of basis states being denoted by B),
we obtain the quasienergies which can be evaluated for
their statistical properties. It is expected that in the spin-
less case [or in equivalent cases such as (iii) in Sec. IIA
above] and in the presence of an antiunitary symmetry,
such as C , the quasienergy statistics will be COE. In the
spin—% case, COE is obtained in the presence of two ad-

ditional geometric symmetries. For broken ¢ symmetry,
or in the presence of one additional geometric symme-
try in the spin—% case, we expect CUE statistics. In the

case of half-integer spin with only C active we expect
to obtain CSE statistics. There is, however, one caveat.
In the presence of localization the classification into the
three universality classes and therefore the introduction
of the Dyson B in (1.1) is meaningful only if the ba-
sis size B is smaller than the localization length. Only
in this case will the quasienergy states interact strongly
with each other and show level repulsion. In contrast,
if B >> A, eigenstates separated by more than the lo-
calization length A can be accommodated in the basis.
But since such states show only an exponentially small
inhibition to level crossing, we expect to obtain Pois-
sonian statistics independently of the symmetries present
[27-29]. There is nothing wrong with B < A since the
idea in this section is to construct an effective procedure
for the characterization of the symmetry properties of H
(U) rather than to obtain a converged representation for
the rotor dynamics.

We found that for specific values (or ranges) of p and
g the quasienergy statistics of U is indeed very well de-
scribed by one of the three universality classes, while for
some combinations of p and ¢ the statistics is not well de-
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scribed by either one of the three universality classes. We
call these regions the “transition regions.” A graphical
representation of the mapping which assigns the respec-
tive symmetry class to a given (p,q) combination will
be presented in the next section. Here we will focus on
three specific combinations of p and ¢ and exhibit the
corresponding statistics of U.

Given p and g¢ we calculated U for the Hamiltonian
H defined in (2.1) [or (2.2), respectively] in a basis of
size B = 81 states. For all three cases (a)—(c) discussed
below we chose 7 = ¥ = 0.05 x 2x/g =~ 0.508 where
g = (v/5—1)/2 =~ 0.618 denotes the “golden mean.” The
control parameter k in (2.1) was chosen such as to result
in A > B. The basis was centered around [y with 40
states to the left and 40 states to the right of lo. The
one-cycle propagator U was calculated for 151 values of
lo ranging from Iy = 5000 in steps of 100 to ly = 20 000.
The one-cycle propagators were diagonalized and the re-
sulting quasienergy statistics were added up after appro-
priate normalization to the mean spacing. A similar set
of calculations with B = 161 states confirmed the follow-
ing results.

(a) For p=0,q¢=0, and k = k = 20/7 ~ 39.345 we
obtained the result shown in Fig. 1(a). The quasienergy
statistics is very close to Wignerian statistics. Therefore
U belongs to the COE universality class. This is natural
since for p = 0, ¢ = 0 the Hamiltonian H is equiva-
lent with the spinless standard kicked rotor which is C
invariant in the sense of (2.6). It is well known that in
the presence of an antiunitary symmetry and in the spin-
less case COE is the expected universality class for the
quasienergy statistics.

(b) Choosing p = 0 and ¢ = 1 the resulting
quasienergy statistics is shown in Fig. 1(b). It is very
close to CUE which is the expected universality class if
a (generalized) time reversal symmetry is absent. Since
case (b) corresponds to (ii) (Sec. I A above) which shows
that H in this case is equivalent with the spinless Hamil-
tonian treated in Ref. [21], the C symmetry as defined
in (2.6) is indeed destroyed and the result shown in Fig.
1(b) is consistent with our expectations.

(c) In case the spin——lz— degree of freedom is nontrivially

switched on, C as defined in (2.7) is the only symmetry
of (2.1). In this case we expect symplectic quasienergy
statistics. In order to check it we chose the representation
(2.2) of the Hamiltonian H. For x = k, ¢ = 0.3, and
1 = 0.8 we obtained the result shown in Fig. 1(c). This
result is very close to symplectic statistics and is again
consistent with our expectations.

We conclude this section with a short note. Replacing
the kinetic energy term in (2.1) by %Tiz — %T(i-}- v)?
does not change at all the statistical universality class of
the Hamiltonian even if « is not an integer. Although
7 corresponds to the switching on of a “magnetic field”
term which in other problems may destroy conventional
time reversal symmetry, it is of no effect in our problem
since, as mentioned above, the “time reversal” in our
system is C which conserves [. Just to make sure, we
repeated the calculations leading to Figs. 1(a)-1(c) with
~v = g. Figures 1(a)-1(c) remained unchanged under this
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FIG. 1. Histogram: Quasienergy statistics of the one-cycle
propagator of the generalized kicked rotor defined in (2.1).

Basis size B = 81 states. We added up 151 statistically
independent cases for better overall statistics. 7 = 7,
(@) (kpg) = (k,0,0); (b) (k,p,q) = (k,0,3); (c)

(k,e,u) = (k,0.3,0.8). The full lines correspond to Pois-
sonian, COE, CUE, and CSE statistics, respectively.
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modification. We emphasize, however, that noninteger
indeed has a noticeable effect if one works with l; = 0 and
in a basis which includes positive and negative angular
momenta [. This case was studied by Izrailev [27], who
showed that a nonzero v indeed switches the quasienergy
statistics from COE to CUE in a symmetric basis.

The different universality classes, which appear as p
and ¢ are varied, can loosely be interpreted as different
“phases” of the Hamiltonian (2.1). In the next section
we will present “phase diagrams” which graphically map
(p,q) combinations onto the different statistical univer-
sality classes exhibited by U.

D. Phase diagrams

In the preceding section we saw that the one-cycle op-
erator U of the Hamiltonian (2.1) has the potential to
exhibit three different universality classes: COE, CUE,
and CSE. Moreover, our computations showed that U
switches smoothly between these three statistical classes
as a function of the symmetry-breaking parameters p and
q. Therefore an important piece of information about
U is to know which statistical class U belongs to for a
given choice of parameters. The best way to visualize
this mapping is in the form of a two-dimensional chart
which shows the different universality classes correspond-
ing to the symmetry-breaking parameters in the form of
a “phase diagram.” In Ref. [21] it was found that the
transition between COE and CUE happens very quickly
as a function of the symmetry-breaking parameter q. For
this reason, we choose to dilate the axes of the phase di-
agrams and define

z =In[p/(1-p)], y=In[g/(1-q)] (2.8)
For 7 = # and k = k the result is shown in Fig. 2(a). We
can clearly distinguish five regions in the z,y parameter
space denoted by Ia, Ib, ITa, IIb, and III, respectively. In
regions Ia and Ib the quasienergy statistics of U is pre-
dominantly COE [denoted by the circles in Fig. 2(a)]. In
regions ITa and ITb we have predominantly CUE statis-
tics (crosses) and in region III the quasienergy statistics is
predominantly CSE (triangles). The transition between
the different regions is not abrupt. There is a transition
region in which the quasienergy statistics is not close to
either of the three standard cases. This is why we used
the term “predominantly” above. In more detail it means
the following: In order to find out which statistics is the
appropriate one for a given combination of z and y (p and
g, respectively), we calculated the quasienergy statistics
of the one-cycle propagator according to the procedures
stated in Sec. IIC. The decision on the universality class
was taken on the basis of the combined statistics of 151
matrices of size B = 161 for every single grid point shown
in Fig. 2(a). The statistics obtained was represented as
a histogram (see Fig. 1 for three special cases). Then,
by computing x? deviations, the shape of the histogram
was compared with the theoretical expectations for the
three universality classes (see full lines in Fig. 1). Every
point (p,q) on the grid of Fig. 2(a) was then assigned a

plot symbol representing the statistics which yielded the
smallest x? for the histogram corresponding to (»,9).

Clearly the type of “either/or” decision used in select-
ing the statistical class for given (p, g) is not able to say
anything about the quality of the fits. This means that
Fig. 2(a) does not give any information about the widths
of the transition regions.

Qualitatively the occurrence and location of the five
different “phases” in Fig. 2(a) can be understood very
well. For instance, the region in which = and y are both
large and negative corresponds to both p and ¢ small.
This is equivalent with the standard kicked rotor and ac-
companying COE statistics. Increasing y, corresponding
to an increase of g, we enter region Ila which corresponds
to CUE statistics. This case was discussed in Ref. [21].
At y = 5 we switch back to COE. This is natural because
for large y, ¢ — 1, which means that for small p there is
essentially only the term proportional to o, switched on
in (2.1). In the representation in which o, is diagonal,
this is equivalent with a standard sin(26) kicked rotor.
Therefore COE is the expected statistics. Similar argu-
ments can be put forward to explain the locations of the
rest of the Ia phase and the IIb phase. Phase III, the
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FIG. 2. Phase diagrams exhibiting the switching between
different universality classes as a function of z and y. 7 = 7
and (a) k = k; (b) k = 51.75. The circles, crosses, and
triangles correspond to COE, CUE and CSE, respectively.
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symplectic region, is naturally located at the center of
Fig. 2(a) which corresponds to strong coupling between
all degrees of freedom in (2.1).

Figure 2(b) shows the phase diagram for k = 51.75.
It is very similar to Fig. 2(a) where we used k = k ~
39.345. Thus the two figures indicate that the borderlines
between the different universality classes are essentially
determined by the symmetry-breaking parameters p and
q and only weakly dependent on k.

III. THE CUE LIMIT

The purpose of this section is a thorough discussion of
the CUE limit of the Hamiltonian (2.1), i.e.,p = 0, ¢ # 0.
First results for this case were already reported in Ref.
[21]. Here we will attempt a clearer and more detailed
exposition. Also, new results will be presented. For p = 0
and in the representation in which o, is diagonal the
Hamiltonian (2.1) is equivalent with

X exp

H = 1112 + kfl(0)6,(2), (3.1)
where
|
D(K.q) = lim ~
(Hq) = Jim 7
mT=—00 m1:—oo
with

J
§; = K Z fa(0p)
p=0
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£.(6) = cos (%) cos(6) + sm( 2q)51n(20) . (3.2)
This is the Hamiltonian which will be used through-
out this section. The classical dynamics induced by
the Hamiltonian (3.1) is chaotic for sufficiently large
K = k7. The form of the Hamiltonian is such that in
the limit of large K the diffusion constant D(K,gq) is
independent of ¢q. For any finite value of K the ratio
R(K,q) = D(K,q)/(K?/2) can be approximated by an
analytical expression which will be derived in the follow-
ing section. As was pointed out in the Introduction, a
precise knowledge of the classical diffusion constant is
mandatory for a meaningful comparison of localization
lengths obtained in different symmetry regimes.

A. Classical diffusion

The diffusion constant for (3.1) can be calculated ana-
lytically with the help of a method due to Rechester and
White [19] and Rechester, Rosenbluth, and White [20].
Although their analysis applies to the case ¢ = 0 it is
straightforward to extend their calculations to the case
g # 0. According to (17) in Ref. [19] we have

[H /2" da} S:_1(K,q)

T
E sz

j=1

0j—1— Si—1(K,q)] ¢ » (3.3)

(3.4)

Note that we define D as being normalized to K2/2 for large K. Also, we use St_; instead of S which is a matter
of convention. The representation (3.3) for D(K,q) can be expressed as a sum of products of Bessel functions. The

lowest-order products are obtained by keeping the following terms in the sum (3.3):
T; (111) mj—_g = —MmMy,m; = +1 + 2,l = 2,3,...,
,T. The evaluation of the integrals in (3.3) for the cases (i)—(iv) is lengthy but

mi—1 = —my,m; = 1+ 2,1 = 2,3,...,
—2m;,m; = x1 £ 2,1l = 3,4,...
elementary. The final result is

D(K,q)

R(K,q) = &2)2)

with

6
~1+2) Ri(K,q),

Q) mi = 0,0 = 1,...,T; (i)
T; (iv) mi—p = my,my_1 =

(3.5)

By = —cos® (?) {JO(U)JZ(V) + 3 (=)Mo (0)[Tanr—2(7) + J4M+2(7)]} ;

M=1

R, = sin? (%) {J0(20)J4(2'y) + 3 (~)MIap (20) [Janr—a(27) + J4M+4(27)]} ,

M=1

R3 = — cos® (1_1;) {|:J1('y)Jo(a' + Mi::l

- [Z ()™ Torr—1(0)[Tamr—1(7) = J4M—a(7)]} } ,

M=1

M Jort (0) [Jans41(7) — J4M—1('7)]:|

(3.6)



oo

>

M=1

R, = sin® (%) { |:J2(27)J0(20) +

oo

£

R = cos? (%) { [Jg('y)Jo(cr) — J2(o) [Js(7) + J1(7)]

oo

>

+ [
M=2

Rs = SiIl2 (%) {(JG(Z'y)Jo(2o) - J2(20') [J10(2'y) + J2(2")’)] +

oo

>

+ |:_J1(2a)[Jg(2'y) + Ja(27)] +
M=2

We defined 0 = Ksin(rg/2) and v = K cos(mwg/2).
Two special cases of (3.5) are of interest. For ¢ = 0 (3.5)
reduces to [19]

R(K,q=0)=1-2J2(K)—2J}(K) +2J3(K) . (3.7)
For ¢ = 1 we obtain

R(K,q=1)=1-2J:(2K) — 2J2(2K) + 2J%(2K).
(3.8)

It is illustrative to expand (3.7) and (3.8) to the first
nontrivial order in K. We obtain
) , (3.9

2 5
R(K,q=0)~1 — 24/ -
(K,q ) K cos(K 1

1 5T
R(K,gq=1)~1 — 2”77_1{ cos <2K_T) . (3.10)

In both cases R(K,q) ~ 1 for large K and is independent
of g. At ¢ = 1 the oscillations in R as a fuuction of K
appear at twice the frequency as compared with the case
q=0.

The quality of the result (3.5) can be appreciated in
Fig. 3 where for K = 20 we compare the analytical result
(3.5) (solid line) with the results of a Monte Carlo sim-
ulation (bullets). Figure 4 shows a similar comparison
but as a function of K for fixed ¢ = 0.2 [Fig. 4(a)] and
q = 0.5 [Fig. 4(b)]. The numerical Monte Carlo data
displayed in Figs. 3 and 4 are obtained on the basis of
200 000 simultaneously propagated classical trajectories
initially equidistributed in the angle variable 6. The sta-
tistical error of the classical calculations is less than the
size of the dots in Figs. 3 and 4.

At certain places in Figs. 3 and 4 large deviations be-
tween the result (3.5) and the numerically obtained dif-
fusion constants can be seen. These deviations are due to
accelerator modes [23]. Accelerator modes in the Hamil-
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(=)™ Janr(20) [Jamr—2(27) + J4M+2(27)]]

(—1)™ Janr-1(20) [Janr-a(27) +J4M(27)]] } ,

oo

(—1)™ Jarr (0) [ J2nr43(y) — JzM—a(’Y)]]
M=2

(—1)MJar—1(0) [Tam+1(v) — Janr—s(7)] — J1(0) [Js () + J1(7)]] } )

oo

>

(=)™ Janr (20) [Janr+6(27) + J4M—6(2’Y)]>
M=2

DM Janr_1(20) [Janr+a(27y) + J4m—8(27)]:| }

tonian (3.1) are apparently very important. We found
that for certain (K,q) combinations accelerator islands
can occupy 6 intervals up to 5% even at K =~ 20.

B. Semiclassical theory

A convenient tool for the study of localization and its
relation to the underlying classical diffusion is the mean
staying probability P,(n) defined as the probability to
remain in the “site” [y after the application of n kicks
averaged over a large domain of [y values [22]:

A/2
. 2

= — " 3.11

Py(n) lim l ;_:A/z [{LoU™[l0)| (3.11)

In the semiclassical limit (k — oo, 7 — 0, K = k7 fixed)
this function has the following properties [22]: (i) There

2.0

1.5 1

1.0

0.5 T T T T
0.0 0.2 04 06 0.8 1.0

q

FIG. 3. The normalized diffusion constant R as a function
of the symmetry-breaking parameter ¢ for p = 0 and K = 20.
Solid line: Analytical result. Circles: Classical Monte Carlo
calculation. Sporadically occurring large discrepancies be-
tween the Monte Carlo results and the analytical results are
due to accelerator modes.
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FIG. 4. Same as Fig. 3 but as a function of K for fixed q.
(a) ¢ =0.2, (b) g =0.5.

exists a critical time n* such that for n > n* P,(n)
approaches a constant value which equals the mean in-
verse participation ratio £71. For 1 < n <« n*, P,(n)
is proportional to the classical probability to stay. The
proportionality factor depends on the symmetry of the
Hamiltonian, and its value is 2 for the standard (¢ = 0)
kicked rotor. (ii) For ¢ = 0, Ps;(n) was shown to be a
scaling function, such that

Py(n) = &' f(n/€)

f(z) is a universal function which interpolates between
f(z) =~ z71/2 behavior for z < 1 and f(z) ~ 1 for z > 1.
The scaling behavior incorporates the well-known rela-
tions [4,8,11] n* ~ £ and £ ~ D and the proportionality
between the localization length A and the participation
ratio £ for exponentially localizing systems.

The function P,(n) distinguishes clearly between the
two relevant time domains of the evolution. The n < n*
domain is diffusive, and the classical dynamics domi-
nates. The only remnant of quantum mechanics is the
“weak localization” enhancement to be discussed below.
The n > n* domain is dominated by strong localization,
a purely quantum (wave) phenomenon. It is natural to
seek a semiclassical theory to describe P,;(n), and use it
to interpolate between the two regimes. The semiclassi-
cal expression for P,(n) reads

(3.12)

2

PO (n) :< > , (3.13)

E pL/2 exp(iS.)

where the sum extends over all classical trajectories (de-
noted by a) which start at a given value of the angu-
lar momentum [ and return to it after n kicks: {,(0) =
lo(n) = I (returning trajectory). The action accumulated
along the trajectory is

n—1

Sa(n) = Y (37121 = k £a(60)] — lo(6n — 00) — T va,
=0

(3.14)

with f,(6) defined in (3.2). The action is measured in
units of &, and v, is the Maslov index. p, in (3.13) is
the contribution of the trajectory a to the classical stay-
ing probability, ps = 5=|dla(n)/df(0)| 1. The angular
brackets denote averaging on Iy as in (3.11).

If the Hamiltonian is invariant under a symmetry op-
eration which does not affect the boundary conditions
[4(0) = lo(n) =, as is the case with the returning tra-
jectories defined above, then to any trajectory a we can
assign a conjugate trajectory a. by applying the sym-
metry operation to a trajectory. Among the symmetry
operations listed above, only C provides a relevant con-
jugation, since this is the only operation which preserves
the sign of I

Consider, e.g., the standard kicked rotor [¢ = 0 in
(3.1)]. The dynamics of the standard kicked rotor is de-
scribed by the standard mapping

loy1 = 1l + ksin(6,) ,
(3.15)
Oni1 = 0p + Tloiy
Given the initial conditions (g,lo) of a classical trajec-
tory «, the mapping (3.15) allows one to calculate the

values of the trajectory at arbitrary times n. If o: (6;,1;),
j = 0,1,..,N is_a solution of the standard mapping

(3-15) so is the C conjugated trajectory a. : (9;,L;),
7=0,...,N with

L; = In—j, ¥ = —0n_j_1, (3.16)
and 9y = 7lyp — 6p. Since for ¢ = 0 every returning

trajectory a possesses an associated conjugate trajectory
Qc, (3.13) can be written as
2
> , (3.17)
lo

where E' denotes summation over returning trajectories
excluding their conjugates. Especially for short trajecto-
ries (small N) it can happen that a trajectory a equals
its conjugate trajectory, i.e., @ = a, (self-conjugate tra-
jectory). In this case the conjugate trajectory does not
give rise to a factor of 2 in the amplitude since otherwise
the trajectory a would be double counted in (3.17). Self-
conjugacy, however, becomes progressively more rare as
the length of the trajectory, IV, increases.

Suppose now that g is small enough so that the labels o
and a. can still be used to identify trajectories which were
exactly conjugate at ¢ = 0. In this case po(g) = pa.(q) =

P8O (n) = 4<

/I 1 ! .
> ph(n)eisem
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Pa(q = 0) is an acceptable approximation. The actions
S and S, , however, change in different directions which
leads to interference terms in (3.17). We have

Sa(n7 q) = Sa(n70) - (Sa(n) ’
Sa.(n,9) = Sa(n,0) + 6o(n) ,

(3.18)

P59 (n; q) = 4<Z'pa (n) cos? 6a<n)> + 4< > (m)pj ()52 =5) cos 5o () cos 6ﬁ<n)> :
o] lo l

a#B

The first term in (3.20) is the “diagonal” contribu-
tion to the staying probability. It can be written as
PS(D)(TL; q) = (2cos?§(n; q))Ps(Cl)(n; q) where, besides the
lyp average, the angular brackets denote a weighted aver-
age over classical staying probabilities and P§CI)(n; q) =
2¥ a’pa is the total classical probability to stay. Accord-
ing to (3.19) the phase ¢ is a sum of n terms. There-
fore, for chaotic systems, and assuming statistical inde-
pendence of the successive sin(20§a)), the phases § in the
limit of large n form a Gaussian ensemble with vanishing
mean and with variance (62) = 2[% sin(%2)]?. Hence,

P{P)(n;q) = P{D(n)F(k,q;n)

= P{P)(n;q = 0)F(k,q;n)/2 , (3.21)
with F(k,q;n) = {1 +exp[—-n% sinz(zzg)]} For small

values of n, the nondiagonal contribution in (3.20) van-
ishes upon averaging and the probability to stay is en-
tirely dominated by (3.21). Here, the quantal probability
differs from its classical counterpart by a smooth function
of time which depends upon the symmetry-breaking pa-
rameter ¢ in a way which interpolates smoothly between
the limits 2 (for ¢ = 0) and 1 for large q. The factor 2
is the typical “weak localization” enhancement which is
known in many fields of physics [30 — 35]. It is due to the
invariance of the system under a symmetry of the type
described above.

The diagonal contribution to the staying probability
vanishes as n~1/2. Hence, the long time properties of
P,(n) are due exclusively to the nondiagonal contribu-
tion in the semiclassical expression (3.20). This is the
semiclassical manifestation of the well-known fact that
localization [here, finite value of P,(n),n > n*] is due to
genuine quantum interference effects, and has no classi-
cal analog. In spite of its importance for the semiclassi-
cal computation of the localization length, the evaluation
of the nondiagonal sum continues to form an unsolved
problem. To demonstrate the dangers of a simplistic ap-
proach to this sum let us try some commonly used intu-
ition which works reasonably well for n < n* but leads
to an erroneous result for n > n*. For n < n* one can
argue that contributions to the nondiagonal term are ex-
pected to come from pairs of trajectories  and 3 whose
action differences are small. Hence, one may extract from
the nondiagonal term a (cos? §),, term in much the same
manner as was done for the diagonal sum:

1773
with
ko (T N ()
da(q) = 5 sin (?) ; sin(26;%) (3.19)

Therefore the staying probability (3.17) is now given by

(3.20)

o

PMP)(n, q) = PND) (n;q = 0)F(k, q;n) (3.22)

Combining (3.21) and (3.22) we find the following result:

Py(n,q) ~ Py(n;q = 0)F(k,q;n) (3.23)
For n > n*, however, this line of argumentation does not
correctly take the interference terms in the nondiagonal
sums into account. It does not include effects of localiza-
tion which for small ¢ are responsible for saturating the
staying probability Ps(n,q) at levels much higher than
predicted by (3.23). We will show this fact in the follow-
ing section (see especially Fig. 5).

C. Quantum calculations

In order to check our semiclassical predictions we cal-
culated exact quantum mechanical staying probabilities
for the symmetry-broken kicked rotor defined in (3.1) for
various values of . The rotor wave functions were propa-
gated using the standard fast Fourier technique [3,5,24].
For 7 = 7 and k = k the resulting staying probabili-
ties were averaged over 390 [y values, o = 1000z + 7,
1=1,...,30, j = —6,...,46. For n < n* we find excellent
agreement between (3.23) and our numerical simulations
(see Fig. 5).

The dependence of P, on g as shown in Fig. 5 and re-
sulting (for n < n*) from the presence of the F' function
in (3.23) is due exclusively to the effect of breaking an an-
tiunitary symmetry and has nothing to do with the fact
that an additional perturbation is switched on. There-
fore a crucial test of (3.23) is provided by replacing the
sin(26) function in (3.1) by cos(26). In this case we ex-
pect Ps(n;q) = Ps(n;q = 0) since the C symmetry is not
broken in this case [36]. This is confirmed by our nu-
merical results (dashed ragged line in Fig. 5). Thus this
numerical experiment, which we call the “cos(20) test,”
shows unambiguously that the g-dependent reduction in
P, is “real” and has to be attributed entirely to the break-
ing of an antiunitary symmetry. It cannot be explained
as an artifact caused by a small additional interaction
term.

For large n values (3.23) implies that an arbitrar-
ily small symmetry-breaking perturbation will cause the
staying probability to decrease to half its value at ¢ = 0
after sufficiently long time. Figure 5 shows that (3.23)
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FIG. 5. Normalized staying probabilities Q(n,q) =
P,(n,q)/Ps(n,q = 0). Full ragged lines: quantum results for
q = 0.005,0.01,0.02,0.05. Smooth solid lines: the semiclassi-
cal prediction (3.23). Dashed ragged line: quantum result for
the “cos(20) test” (see text).

is not valid for n > n*. In other words, the simple-
minded argument which led us to (3.23) cannot be used
for n > n*. Rather, our numerical work suggests that
due to strong localization Ps(n;q) freezes at n =~ n* and

the asymptotic value of P,(n;q) is given approximately
by

Pa(q) = lVlgnco N - n—;+1 P (n 9
= Pa(q =0)F(k,q;vn*) , (3.24)

where v is a numerical factor on the order of 1. If so, then
(3.24) predicts that for small ¢ and with n* ~ D ~ k2,
the ratio Q, = P,(q)/Pa.(g = 0) scales in z = ¢%k*.
Apart from statistical and possibly systematic fluctua-
tions this is indeed the case (see Fig. 6).

When ksin(rqg/2)/2 > 1 we are in the extreme broken
symmetry regime where Ps;(n;q) = P,(n,0)/2 for all n
values. Here, £(8) = PE€(B = 1). This is equivalent
to what is known from the random-matrix treatment of
localization in quasi-one-dimensional disordered systems

L ]
0.8-§
.6
®
A #
« X
064 & *xo
LN PO SRS
.A'A *
A A
0.4 T T T
0 50 100 150 200
Z

FIG. 6. Check of the scaling behavior of (3.24) for
k = 23.42 (triangles), 19.67 (diamonds), 17.88 (stars), and
16.39 (bullets) for various values of q.
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T

FIG. 7. The universal function f(z) = £ P;(n) as a function
of scaled time z = Bn/¢{(8 = 1) for B = 1 (¢ = 0, circles),
B = 2 (¢ = 0.32, crosses; ¢ = 0.5, diamonds, respectively),
and 7 = 7, k = k. The bullets correspond to the symplectic
case (8 = 4). Here, k = k, £=0.3,and p = 0.8.

[13,14]. Owur numerical data suggest an even stronger
result. We find that in the symmetry-broken regime the
function P,(n; ) scales as

e
£8)" \&(8)
where the function f(z) is the same function as defined
for the time reversal symmetric case (see Fig. 7). This
result is surprising because of the following reason: It
was shown in Ref. [22] that P,(n) is a Fourier transform
of the two-point cluster function for the local spectral
density. In (3.25) the same function is used for the cor-
relation functions in the 8 = 1 or 2 ensembles. For the
Dyson ensembles this is not the case, and the two cluster
functions cannot be related by a simple scaling law.

A prerequisite for any scaling function of the type
(3.25) is that the participation ratio and the classical
diffusion constants are proportional. Only in this case
is normalization of the localization lengths to the classi-
cal diffusion constants a meaningful procedure. Indeed,
it was shown in Ref. [21] that the ratio R(?M)(k,7,q) =
&(q)/2¢(g = 0) is close to unity on average, and that it
fluctuates in a way which is rather similar to the corre-
sponding ratio of the classical diffusion constants. This
guarantees that the normalization to the classical diffu-
sion constant ensures a common basis with respect to
which the appearance of nontrivial factors in the local-
ization length can be discussed.

Py(n; B) = (3.25)

IV. THE GENERAL CASE: CSE

We will now turn to the general case p # 0, ¢ # 0
where the spin degrees of freedom in (2.1) are nontrivially
switched on. According to the discussion in Sec. II this
is the case where we expect the one-cycle operator U to
exhibit CSE statistics if p and g are chosen from region
IIT in Fig. 2. This case corresponds to B = 4 and offers
the opportunity to check whether the localization length,
as predicted by (1.1), really grows by a factor of 4 in this
case.

Again, the importance of the classical diffusion con-
stant has to be emphasized. Changing the symmetry-
breaking parameters will in general result in a change
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in the classical diffusion properties of the system. Ob-
viously, the localization lengths for different universality
classes can be compared with each other in a meaningful
way only if the localization lengths are properly normal-
ized to the corresponding classical diffusion constants.
In order to calculate the diffusion constants we need a
classical analog for the Hamiltonian (2.1) which is ap-
plicable for general p and ¢q. Although the Hamiltonian
(2.1) is spin dependent in the general case, a classical
analog could be constructed easily in the preceding sec-
tion because for p = 0 the Hamiltonian (2.1) can be nat-
urally diagonalized and split into two decoupled rotors.
Each one of the rotors, the “spin-up” rotor and the “spin-
down” rotor, has a natural classical analog which is the
parity broken kicked rotor. But in the most general case
(p # 0, ¢ # 0) the spin degrees of freedom are nontriv-
ially coupled and it can be expected that the construc-
tion of a “classical” analog for the quantum Hamiltonian
(2.1) is difficult. This is so because the spin expectation
value is small (“spin-} rotor”) and by no means “clas-
sical.” Therefore we construct a “classical” model by
leaving the spin degrees quantum mechanical and going
to the classical limit in the (n,0) coordinates. In the
J
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following two sections we will propose two procedures,
the mean-field approach and the Hamiltonian approach,
respectively, which implement this program. They yield
identical expressions for what could be called the classical
mapping equations for the quantum Hamiltonian (2.1).

A. The mean-field approach

The essence of the mean-field approach is to replace
the operators [ and 6 in (2.1) with their expectation val-
ues. In order to derive the mean-field equations we start
with the Hamiltonian (2.1) in the form (2.2) and assume
that the total wave function | ¢(¢)) of the system can be
factorized into a space part | ¥) and a spin part | x), with
(¥ | ¥) =1 and (x | x) = 1. This is obviously a prob-
lematic assumption since in our system the space and the
spin degrees of freedom are strongly coupled. Despite its
shortcomings we will use the mean-field approach in or-
der to explore its consequences. Inserting |¢) = |¢)|x)
into the time-dependent Schrédinger equation ia%lga) =
H |p) we get

if| ) + (x| X) | 9)} = {377 + rcos(0),(t)} | %)

H{@19) 10+ 130} = @ | B8 + keos(@)5,()] | ) | )

+er(y | sin(0) | ¥)op(t)o= | x) + Fun(y | sin(26) | $)5p(t)o= | X)

We observe now that (1/1|1/)) is purely imaginary and
a function of time only. Furthermore, (¢|%Ti2 +
kcos(0)d,(t)|v¥) is only a function of time. Inserting the
gauge transformation

I x) = exp{—iL [(# | 3712 + K cos(8)é,(t') | )

+r{lusin(20)(x | 02 | x) +esin(@){x | o2 | X)}6x(t) | ¥) , (4.1)
(4.2)
[
where
Ho = L1712 + Kk cos(8)d,(t) (4.8)
and
V(t) = klesin(8){¢ | 0. | ¢)
. + zusin(20)(¢ | 0= | $)]0p(t) | @) (4.9)
—i(¥ | ¢)]dt'} | #) (4.3)
into (4.2) yields
i| ¢) = ex(y | sin(9) | $)8p(t)o= | &)
+1u k(Y | sin(20) | 9)5p(B)0n | 9) . (4.4)
A similar gauge transformation
(W =ew{- [lva}law) @)
inserted into (4.1) yields
.0 =
za|a) = Hla) , (4.6)
with
H = Ho + V(t), (4.7)

Equation (4.6) is nothing but a Schrédinger equation for
|a) with a Hamiltonian H which can be immediately in-
terpreted as a classical Hamiltonian. Introducing the no-
tation (t|¢) = ¢T(t) and (| |#) = ¢*(¢), the classical

equations of motion for [ and @ are therefore given by

6 = 71, (4.10)
[ = rfin(9) — ecos(9)[|¢"]* — |4*]7]
— pcos(20) [T ¢ + ¢t 74T} 6,() (4.11)

In order to close Egs. (4.11) we need ¢ and ¢+. At
this point we interpret 6 as a classical variable. Ac-
cordingly, we approximate (3|sin(6)|¢) ~ sin(f) and
(¥]sin(20)|9) ~ sin(26) and obtain from (4.4)
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i67(0) = { sin(@)7(0) + § sin(20)84() 5,00
(4.12)

. . [T

ig*(t) = /{{—5 sin(8) @ (t) + 5 sm(20)¢T(t)}5p(t).

Before presenting the mapping which corresponds to
(4.10)—(4.12) (see Sec. IV C below) we will now derive the
system of equations (4.10)—(4.12) from a different point
of view.

B. The Hamiltonian approach

Just like in the preceding section our starting point is
again the Hamiltonian (2.1) in its form (2.2). Suppose
that [ and 6 in (2.2) are ¢ numbers whose time depen-
dence is given as I(n) and #(n). Then, the Hamiltonian
(2.2) is the Hamiltonian of a spin- particle with

W=Hy, ¢= ( mg ) (4.13)

Separating real and imaginary parts of %" and ¢+ we
define
YT =A+iB, ¢yt =C +iD (4.14)
Furthermore, we define the matrix elements of H as
Hap = (1] H 1) = 712 + nlcos(68) + e sin(6)]6, (1)
Hy, ={H)

= L70% + kcos(9) — esin(0)]6,(t) , (4.15)
Hy = ({| H [t) = 3xpsin(260)8,(t)
Then,
! = Hyyy' + Hyyt
(4.16)

it = H  y* + Hyp'

Defining o = V2 A, 3= +v2B,v=+v2C,n= 2D, the
set (4.16) is equivalent with

&=Huf+Hyn, P=—Hype—Hpy,
(4.17)

¥Y=Hyn+HB, n=-H, v— H

Interpreting o and «y as generalized positions and 3,7 as
generalized momenta, the set of equations (4.17) may be
considered as classical equations derived from the Hamil-
tonian

Ho = 3Hy (@ + B%) + 3H (v + n?) + Hy(Bn + o)
(4.18)

via the canonical equations

. chl ﬂ _ _chl o chl _ _chl
a = 6,8 ’ - aa ’ Y= 877 ) n= 3'y
(4.19)

At this point we interpret H, as the classical version of
(2.1) and therefore

. OH,
6 = all =rl, (4.20)
i 0H : 1 2 2
l=- 20 = k{sin(0) — %¢e[(a® + B?)
—(v* 4+ 7)) cos(0) — u(Bn + ay) cos(20)}5,(t).

(4.21)

Identifying o = vV2R¢", 8 = v23¢T, v = V2R¢t, n =
V2S¢', it is easily seen that (4.10), (4.11), and (4.12)
are equivalent (or even identical) to (4.20), (4.21), and
(4.17), respectively. Therefore, both the mean-field and
the Hamiltonian approach yield the same equations of
motion for ! and 6. In the next section, the equations of
motion (4.12) [(4.17), respectively] will be solved in the
form of a mapping.

C. The mapping equations for the mean-field model

Deriving a mapping for the mean-field equations
(4.10)—(4.12) is not as simple as in the case of the stan-
dard kicked rotor. The reason is that the amplitudes ¢'
and ¢* are discontinuous at a kick. But since their val-
ues at the kick are needed in (4.11) it is not immediately
clear what this value should be. In order to resolve this
problem, it is best to use a square integrable approxima-
tion of the § function with finite width 7 and perform
the limit 7 — 0 after (4.11) and (4.12) are integrated for
finite 7. We choose

1/7 for0<t<T

5(t) ~ { St< ,

®) 0 otherwise . (4.22)

Denoting by ¢, 0,,, the values of ¢ and  immediately
before kick number m, we have for 0 <t < 1

¢(t) = exp (—z'%t[s sin(f,,)o,

+ %usin(20m)am]) Gm (4.23)

This expression can be used to integrate [ in the interval
0 <t < 7 when replacing J§,(t) in (4.11) by (4.22). The
calculations are straightforward and will not be reported
here. Denoting by l,,+1, @m+1, Pmi1 the values of the
variables immediately before kick number m+1 we obtain
the following mapping for [ in the limit 7 — 0:
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lm+1 = b + K£8in(0,,) — ke cos(O0m ) A — 261 c08(6,,) B,
2 2 u? o, e? | . m *
Am = |00 = |#%]'] [Ic = I, sin*(0n) +I,,?sinz(0m)] + 2Isc ™ sin(20,,)S[#h,” ot
s
+4I,,Z—‘;sin(em)sin(zom)mmn*qsin] , (4.24)
2
B,, =2 [I + I, —s1n2(20 ) — Is— sin X m)} R[], ¢¢ ] —2Isc~sm(0m) [¢T #t]
+21I, »~sm(0m)sm 26,,)(| o1, | Id) | ]
[
where
) ) e2sin®(0) + 1u2sin®(26) (4.26)
I. = - + —ssin(2ks) , . . . .
2 4ks Since ! is constant between kicks we get immediately from
1
Isc = o [1 — cos(2ks)] , (4.25) (4.10)
1 1
_1_ 1 Omir = O + Thn 4.27
I, 5~ ns sin(2ks) , +1 +1 ( )
and For t = 7, (4.23) yields
J
¢;+1 = (cos(ns) —is sin(ks) sin(0m)) o — zg sin(ks) sin(20,,) %, ,
s
(4.28)
¢ﬁt+1 = (COS(KS) + zi sin(ks) sin(6. )) ot — z— sin(ks) sin(26,,) 7,

The mapping (4.24)—(4.28) can be used to calculate
staying probabilities and the classical diffusion constants
for the symplectic kicked rotor (2.1). The dots in Fig.
8 labeled “mean field” show Ps(n) for 7 = 7, k = k,
€ = 0.3, and u = 0.8 calculated with the mapping (4.24)—
(4.28). We used lp = 0, ¢3 =1, ¢$ = 0, and 10° initial
# values equidistributed in [0, 27]. Furthermore, in order
to improve the statistics, the staying probability Ps(n)
was time averaged over five kicks. The full line in Fig. 8
is a fit to the mean-field P;(n) data. It decays as 1/y/n
which is the correct behavior for a diffusion process. In
fact, for a classical diffusion process we expect [22]

1
V2nDn

On the basis of (4.29), a diffusion constant D = 10% can
be extracted from the straight line fit to the data points
in Fig. 8. This figure also shows that the diffusion in the
mean-field model never stops. This means that due to
the classical approximation in [ and 6 (4.24)—(4.28) does
not show any localization effects.

Clearly the mapping (4.24)—(4.28) is very complicated
and analytical approximations to the diffusion constant
are desirable. In the next section we will discuss an al-
ternative approach which yields an analytical estimate of
the classical diffusion constant.

P,(n) = (4.29)

D. Quantum energy mapping

An approximation to the classical diffusion constant
can be obtained from the energy mapping of the gener-
alized kicked rotor (2.1). The energy of the rotor imme-
diately before kick number n is defined as

= (Pn | 2| 9n) = (%o | U PU™ | 4ho) , (4.30)

10-?
P,
10—3 -
10—4 -
10° 10t 102 108 104
n

FIG. 8. Total staying probabilities (sum over spin-up and
spin-down components) of the symplectic kicked rotor (8 = 4)
for the same parameters as in Fig. 7 for the mean-field and
quantum approaches. In both cases the initial spin state was
|t). Full line: 1/4/n fit to the mean-field staying probability.
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where U is the complete rotor propagator over one kick
(the one-cycle operator) and g is the starting state. To
find the energy mapping we use

Eni1 = (Yns1 | | Yni1) = @, |URU | ,)

(4.31)
The complete one-cycle propagator factorizes into
U= exp{—i%Tiz}V ) (4.32)
with
V = e—incos(e)e—ins(v-a’) (433)
Here
1 3 1sin(26)
v = 0 (4.34)
e sin(6)

and s was defined in (4.26).
(4.32), we arrive at

Using the factorization

Eng1 = (%o | URU | 4) = (9 | (V)TIV | 9,)
(4.35)
J
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Using the identity [V = [f, V]+ Vi with{ = —ia% we get

IV = V]I + ksin(9)] + e~ireosO[f ¢=irs(vo)] (4 36)
The commutator in (4.36) is given by
—&s'(v-o)e ) _ (v'. o) sin(ks) , (4.37)

where the primes denote differentiation with respect to
6. With this expression (4.36) becomes

A

IV =V[i+&sin(8) — ks'(v - )]

—e 50 (v'. &) sin(ks). (4.38)

Multiplying (4.38) with its Hermitian conjugate we ob-
tain a result which consists of spin independent and spin
dependent terms, respectively:

(IV)ilv = Fy — F,. (4.39)
Here,

Fo = [[+ xsin(0)]? + &2(s")? + (v')?sin®(ks) (4.40)

and

F, =&lls'(v-o)+ ' (v-o)l] + 2% (v - &) sin(6) + 2k sin(6) sin(ks)[(v - &) cos(ks) — (v - o) sin(ks)]
l

+[ie?** ) (v' . &) sin(ks) + (V' - o)e (V) sin(ks)

We note that the term in square brackets in (4.40) is
exactly the one for the standard kicked rotor.

[+ xsin(0))? = %+ 1x? - 1k2cos(26)

+x[[sin(6) + sin(8)]] (4.42)

Neglecting the spin dependent contribution F,, which is
expected to be small, we obtain the energy mapping

Ent1 = (¢n | [[+xsin(0)]” + 5%(s')

+(v")?sin®(ks)|¥n) (4.43)
The right-hand side of (4.43) can be evaluated approx-
imately by assuming that (6 | 4, ) is equidistributed in
6. Using En = (Yo | 2 | ¥n), (¥ | cos(26) | ¥n) = 0,
(¥ | Isin(f) + sin(0)! | 1,) =~ 0 we obtain

E'n+1 = E, + D(K; €, “) ’ (4‘44)

where

D(k;e,p) = 3k + AD(k;e,p) , (4.45)

with

27

AD(k;e, 1) = % / dO[R2(s')? + (v')? sin?(xs)]

(4.46)

] . (4.41)

The term x?/2 corresponds to the lowest-order diffusion
constant of the standard kicked rotor. To this the spin
dependent parts in the Hamiltonian (2.2) contribute ap-
proximately AD given in (4.46).

It can be checked numerically that for the cases of in-
terest here the second term in (4.46) is on the order of 1,
while the first term is of order x? > 1. Therefore (4.46)
can be approximated by

2

27
AD(k;e,p) = 2’“_% (s')2do (4.47)
0

The integral in (4.47) can be evaluated analytically so
that (4.45) finally reads

D(xie,m) = "1+ 21(e, )] (4.48)
with
2 2\2
Ieyp) = & :2“) [1— \/5—2:—,57] — 1u2 . (4.49)

Figure 9 shows the ratio R(p,q) = D/(k?/2) where D is
the diffusion constant defined in (4.48). Note that R does
not depend on k. It is a function of p and ¢ only. This can
easily be shown using the transformation formulas (2.3)
and (2.4). Figure 9 gives a good impression of the behav-
ior of R(p,q). It can be checked immediately that (4.48)
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FIG. 9. Normalized analytical diffusion constant R(p, q) of
the symplectic kicked rotor as a function of the two symme-
try-breaking parameters p and gq.

yields the correct zero-order diffusion constant D = k?/2
in the limits € = 0, u arbitrary and p = 0, € arbitrary.

If the time evolution of the symplectic rotor wave func-
tion |¢) were purely diffusive and governed by the diffu-
sion constant D in (4.48), we would expect that the stay-
ing probability for the symplectic rotor decays according
to (4.29). For the parameters used in Fig. 8, the ana-
lytical prediction for the diffusion constant on the basis
of (4.48) is D = 1115. This value for D is in excellent
agreement with the diffusion constant D ~ 103 extracted
from the straight line fit to the mean-field data (full line
in Fig. 8).

E. Quantum calculations

Solving the time dependent Schrédinger equation for
the nonresonant symplectic kicked rotor does not pose
any difficulties. @~'We used the standard fast Fourier
method adapted to the present case to propagate the
rotor wave function. As a first application we calculated
numerically the exact quantum staying probability for
the symplectic rotor for the same parameter set as was
used in Fig. 8 to calculate the mean-field staying proba-
bility. Averaging the staying probability over a large set
of lp values as described in (3.11), we obtain the result
marked “quantum” displayed in Fig. 8. Just as in the
case of the mean-field model, the quantum staying prob-
abilities were locally time averaged over five kicks for a
better overall statistics. The quantum staying probabil-
ity is seen to be a factor of 2 lower than both the classical
mean-field staying probability and the staying probabil-
ity calculated on the basis of (4.29) with D calculated
from (4.48). This is weak antilocalization.

The quantum staying probability displayed in Fig. 8
can also be used to verify the scaling law (3.25) for the
symplectic (8 = 4) case. From the asymptotic value
of the staying probability we extracted the participation
ratio £ and defined the scaled time z = 4n/{. Plotting
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EP,(n) versus ¢ we obtain the bullets shown in Fig. 7.
We see that the f function for the CSE case (bullets) is
very close to the corresponding f functions for the COE
and the CUE cases. There are, however, statistically
significant oscillations in the f function of the CSE case
which deserve further study. Thus we established that
apart from the apparent oscillations the scaling relation
(3.25) also holds for 8 = 4.

In order to prove (1.1) for the symplectic kicked rotor
as an example of a dynamically localizing system, we
calculated the proportionality constant ¢ which relates
the participation ratio to the diffusion constant according
to

& = cD (4.50)
In order to evaluate ¢ we calculated the diffusion constant
D quantum mechanically according to

200

D™ = 55 3~ alPlun) [ /

n=1

(4.51)

The participation ratio is inversely proportional to P,,
the asymptotic probability to stay in the initial state

| o):

N
— 3 - 2
Po= lim ——— n;_ [(n 90} (4.52)
This way we get
1
= Dmp, (4.53)

Figure 10 shows the normalized proportionality constant
é =c/c(B = 1) as a function of z for y = 0 and 7 = 7,
k=k Asz sweeps from —10 to 5, ¢ shows jumps and
plateaus. The plateaus coincide exactly with the CUE,
CSE, and COE phases of H, respectively. The jumps
occur in the transition regions between well established
symmetry classes [compare Fig. 2(a)]. Figure 10 con-
vincingly proves the relation (1.1) for a system with dy-
namical localization.

FIG. 10. Normalized proportionality constant
é=c(B)/c(B=1) for y =0 (g = %) as a function of z. The
function changes sharply by universal factors at the bound-
aries between universality classes (compare Fig. 2).
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V. DISCUSSION, SUMMARY,
AND CONCLUSIONS

The dependence of the localization length on the uni-
versality class was derived in the previous sections indi-
rectly by computing staying probabilities. The staying
probabilities were normalized to the quantum diffusion
constant D(?™) in the diffusive regime. With the help of
detailed calculations we checked that the results summa-
rized in Fig. 10 do not change qualitatively if they are
normalized to the diffusion constant calculated with the
mean-field approach. Even using the analytical diffusion
constant does not change this result.

A more important question is whether the dependence
of the localization length on the universality class can be
demonstrated directly. At this point we can give a partial
answer which applies to the COE — CUE transition. We
focused on the case K =5, 7 =7, k = 5/7, p = 0 and
computed quasienergy states by a direct diagonalization
of the one-cycle operator for various choices of q. Our
basis size was B = 1024. For every given q value we
chose ten [y values given by lo = 5000, 10 000, ..., 50 000.
The quasienergy states obtained were evaluated in the
following two different ways.

(i) We picked 21 states around each of the Iy values
and calculated their participation ratio £(q). Averaging
over the resulting 210 £ values we obtained a global par-
ticipation ratio denoted by &(q).

Figure 11 shows R = D(q = 0)£(q)/D(q)€(q = 0) for
a range of ¢ values. Here, D is the classical diffusion con-
stant which properly normalizes the quantum participa-
tion ratios. The classical diffusion constant was obtained
numerically by a Monte Carlo calculation with 10° tra-
jectories.

The transition from R = 1 to R ~ 2 is clearly visible
in Fig. 11. Thus, using an alternative and independent
method of determining £, we have shown that the factor-
of-2 increase in the localization length is “real” and not
an artifact of the particular method used to evaluate the
participation ratio &.

(ii) A direct demonstration of the influence of symme-
try on the localization length of quasienergy states can
be obtained by looking directly at the quasienergy states
themselves. The problem here is that the localization
length of quasienergy states fluctuates dramatically [8].

2.0
R L
1.5 |
1.0 4
0.5 ,
0.0 0.1 0.2

FIG. 11. Normalized participation ratio R(q) for a range
of ¢ values in the transition region COE — CUE.

q

Therefore assigning a localization length for given con-
trol parameters k, 7, p,q makes sense only if we average
over the localization lengths of many quasienergy states.
We obtained averaged quasienergy states in the follow-
ing way. For every one of the ten lp values defined above,
we chose 20 quasienergy states with the largest overlap
with lo. This procedure ensures that the corresponding
quasienergy states are well represented within the finite
basis. This way we obtained 200 quasienergy states |a;),
7 =1,...,,200. For every one of the 200 states we calcu-
lated its I average, [;. The absolute square of the aver-
aged quasienergy state (m|a), m = ...,—2,-1,0,1,2, ...,
is now defined according to

[(mla)[* = exp ﬁ;mwmwmm SNCEY

Figure 12 shows the resulting two averaged quasienergy
states for ¢ = 0 and 0.1. The change in localization
length is clearly visible. This is the most direct test of
the influence of symmetry on the localization length. We
note that the definition (5.1) can be generalized and that
the concept of the average quasienergy state can be used
generally to overcome the fluctuation problem [8] of the
quasienergy states.

Due to basis size problems we were not yet able to
check the factor-of-4 increase inthe localization length in
the CSE case by direct diagonalization of the one-cycle
propagator. We feel that this check is important. It is
currently under active investigation.

In summary, we have shown that the localization
length of the symplectic kicked rotor depends smoothly
on the strength of the symmetry-breaking interactions.
Normalizing to the diffusion properties of the classical
system we established that the localization length of the
kicked rotor reflects the universality class according to
(1.1) above. In the CUE limit we derived explicit semi-
classical formulas which qualitatively reproduce the tran-
sition of the localization length between the symmetric
and the symmetry-broken cases. It was shown that the
critical field strength needed to break the symmetry can
be evaluated by requiring that the rms of the action due
to the symmetry-breaking force acting during the local-

| < ma > |?

10-° T T T
—400 —-200 0 200 400

FIG. 12. Ensemble averaged quasienergy states for p = 0,
g =0 (COE case) and p =0, ¢ = 0.1 (CUE case).
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ization time n* = ¢ is of order & (=1). This is an intu-
itively clear requirement and it was proposed in a differ-
ent context by Sivan and Imry [37]. Finally, the scaling
relation (3.25) first proposed in Ref. [22] for the sym-
metric kicked rotor was generalized to include all three
universality classes.

As a last point we would like to emphasize that we
studied here a quantum system which is analogous to a
quasi-one-dimensional disordered system. It is not clear
at all whether similar results apply to higher-dimensional
systems. This is an important open problem which calls
for further research.
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